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THE STRONG INJECTION OF GAS INTO A SUPERSONIC FLOW 
WITH TURBULENT MIXING* 

1.1. VIGDOROVICH 

A strong distributed injection of gas into a supersonic stream through a 
permeable plate is examined when the boundary layer (BL) is pressed back 
from a streamlined surface and the blown gas in the inviscid boundary 
region is separated from the oncoming stream by a turbulent mixing layer 
(ML). A disconnection criterion for the turbulent BL on injection and 
a similarity rule reflecting the fact that the flow over the plate is 
dependent on conditions at the end of the permeable section are formulated. 
Universal curves for the pressure distribution and injection-layer depth 
are given and flow force characteristics are calculated. The applicability 
of the solution derived from a simpler flow model, in which the ML is 
replaced by a contact breaking surface, is established, with a correspond- 
ing correction for turublent mixing. 

1. Formulation of the problem. We examine supersonic flow over a smooth plate 
positioned at zero angle of attack to the oncoming stream with the injection of gas through 
a permeable section of its surface. Gas isblownin evenly, perpendicular to the plate with 

constant flow rate qm and gas temperature at the wall T,. 
Let us assume that, as a result of injection, the BL is 
pressed back from the entire permeable surface so that 
the gasblowninto the inviscid boundary region 1 (Fig.1) 
is separated from the outer flow by the turbulent ML which 
develops from the start of the permeable section. This 
flow diagram corresponds to experimental data, for example 
/l, 2/. 

Fig.1 
We denote by E and S the oreder of relative ML thick- 

ness and the inviscid part of the blowing layer. Since 
the BL is pressed back as a result of the blowing, the transverse component of the flow of 
mass in the boundary region in order of magnitude is not less than intheML. Thelongitudinal 
component, however, is not greater than in the ML. Hence, and from the continuity equation 
it follows that 6 > 0 (E). 

Let us examine the non-viscous part of the inflation layer. We shall use dimensionless 
variables. We will assign Cartesian coordinates to the length 1 of the permeable section, 

pressureto P,,density to m,P,f(kT,). velocity components to I/kT,lm, and the flow function 

to 1P, I/m, I (kT,,J, where kisBoltsmann's constant, andmwis the molecular weight of the gas 
blown in; the parameters of the unperturbed oncoming flow are denoted by the subscript oo. In 
accordance with theconceptof a "thin layer" /2, 3/ we will assume that s<l. At measured 
*Prfkl.Matem.MeJchan.,51,4,600-610,198f 



supersonic speeds of the oncoming stream, according to linear theory, p-1=0(6) in the 
blown layer. Hence, on the basis of adiabatic and Bernoulli integrals and the equation of 
continuity in the boundary region 

p - 1 := 0 (6), II = 0 (W"), u = 0 (@'2), * = 0 (s"'") 

From the transverse velocity and boundary condition estimates on the solid it follows 
that we can take 6 = (qW / P,)913 (kT, I m1c)1’3. 

From the condition of equality of the orders of magnitude for the transverse velocity 
in the wall region and ML we obtain s = O(Wa). In other words, when the BL is disconnected 
from the wall it is much shallower than the non-viscous part of the injection layer but the 
flow of gas in both layers is generally of the same order. Viscosity forces play a major 
role in the ML. Since the pressure perturbation is small and the flow in the boundary 
region is slow, in the limit as S-t0 for the ML, the problem of isobaric mixing of the 
supersonic stream with the gas at rest, which has the physical parameters of the injected 
gas at the wall /3, 4/. If the BL thickness at the start of the injection is negligible, the 
problem is selfsimilar. The selfsimilarity of the velocity profile in the injection layer 
was observed in experiments /5/, 

We denote by q. the flow of gas entering the selfsimilar ML from the region at rest. 
The quantity qoiqm, where grn is the supersonic flow rate, will depend generally on the 
relation betweenthetemperatures and molecular weights of the injecting gas and the oncoming 
flow, the adiabatic indices, the Mach number and the Prandtl and Schmidt turbulent numbers. 
Given data on the empirical constants occurring in the set, a specific form of this dependence 
Can be obtained from the solution of the corresponding set of equations for the ML. These 
data are very limited at pxesent, however. 

Assuming that the velocity pressure of the gas jets are entirely determined 
number and the velocity pressure of the oncoming flow /6/, it is possible to use 
approximate formula: 

Such a dependence for n-l,=0 was proposed /7/ as a result of calculations 

by the Mach 
the following 

(i-1) 

on the basis 
of the mixing path hypothesis. Apart from this, in the related problem of an axisymmetrical 
submerged jet, the proportionality of unified flow to the square root of the ratio of 
densities is well borne out by direct measurements /a/. The Coefficient b diminishesasthe 
Mach number increases. According to data 171, b-0.93 for M,= 0 and is obviously several 
times less than this value at supersonic Mach numbers /9/. 

In accordance with the estimates of gas-dynamic functions presented above, we introduce 
a new Mises independent variables x' and y = 8-3'"q in the boundary region and we expand the 
dependent variables in asymptotic series in the small parameter 6. Theseas~ptOtiCexpansions 
and also the set of equations of the first approximation with boundary conditions on the 
plate and the outer boundary of the boundary region ) adjacent to the ML, take the form /lo/. 

y--y+ . . . . p-it_GPs_ ,.., P-l-km+.*. (1.2) 

ll - WVJ -/- . . .( ” - WW + . . . 

(‘izci + P), = 0, I% = 0, (P - yJ?)* = 0 (1.3) 
Yv = l/U, Y, = VIU 

I=-x,O<x<d1: Y=O, u=o, V==I,R=P 

y = -4c"iP,, 0 < 5 < 1: P = y,M,2 (M,Z - I)-“z XdY/dx 

The equations of the thin layer (1.3) are obtained by substituting the expansions (1.2) 
into the Euler equation and the boundary condition at the outer boundary is specified 
according to the Ackeret formula for the pressure on the thin profile. In addition it is 
taken into account that the thickness of the displacement of the ML is negligible compared 
with the thickness of the whole injection layer. 

2. The disconnection criterion of the BL. The similarity rule. The expression 
for the flow function at the outer boundary of the non-viscous region may be rewritten in the 
form 

The non-viscous region close to the wall arises when the injection parameter is B>B*. 
The quantity 3, Can be considered as a critical value of the injection parameter at which the 
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disconnection of the turbulent BL from the start of the permeable section takes place, where 
the thickness of the accumulating BL is negligible. If formula (1.1) is used for qo, thenthe 
value B, = b(M,) is only dependent on the Bach number of the oncoming stream. 

Integration of thin-layer Eqs.(1.3) gives the following integral equation for the pressure 
on the plate /lo/: 

x 

s [P (5) - P (.z)]-‘1. q = o,B 
4 x/w cl 

Since the velocity vector of the injected'lgas is directed perpendicular to the surface, 
in accordance with the linear theoryofsupersonic flow p(O)= + 00. Changing in (2.1) to the 
independent variable t = -(Mm2 - 1)“3(y,M~2)-2’3P,we obtain the following set of equations for 
the functions x(t) and r(t) 

t 

s t 
r(t) 

*ar=_l/~ s 
I/t--r w’ (z) dz, x [r(t)] = $I 

-ca 

which contains the single parameter o which varies in the range 4 < m< co. Ihe relative 
injection parameter o expresses the ratio of the gas flows travelling through the surface 
of the plate and the lower boundary of the ML. 'Ihe condition o--f 1 corresponds to near- 
critical injection. The other limiting case o = 00 occurs when the injection is fairly large, 
the flow of gas forced into the mixing zone is comparativelysmall and the ML can be taken to 
be the contact surface. 

The function x(t) in (2.2) is defined apart from an arbitrary constant. This indicates 
that it is essential to specify the additional boundary condition /3, lo/, for which the 
pressure at the termination point of injection can be set, for example. The solution of Eq. 
(2.2) r,(t, o) on the whole straight line - 00 <t< i- 00, which satisfies the boundary 
condition z,,(+ 00, o)= 1, has a universal character. Any solution of Eq.(2.2), which corre- 
sponds to a certain pressure at the end of the permeable section t 1, is expressed in terms of 
it by the formula r (t) = x0 (t, 0)/x0 (tl, a),- 00 < t < t,. The universal solution itself x,(t, 0) 
corresponds to the pressure distribution with a singuiarity where the injection is terminated 
P (1) = -co. This situation arises, for example, when the permeable plate ends in a step, 
for which a sufficiently low bottom pressure /3/ is established. 

The above can be formulated as a similarity rule for the flow being studied and the 
corresponding distribution of selfinduced pressure on the plane can be written in the follow- 
ing parametric form: 

5 = 50 (c,', o)lzo (Cpl', o), cp' = -2t (2.3) 
cp =(M,S - l)-'U?'&,' 

where cpl' is the value of the pressure transformation coefficient at the injection termination 
point. For the distribution of the thickness of the injection layer ya and the force and 
moment coefficients we will have 

y., = (M,* - 1)“*B”*y, (c,‘, o)/T&;I, 0) (2.4) 

CY ’ =(MM,2 - lpB-‘k”= 2y,(&,o)/s,(c;,,o) 

c,' = (M-2 - i)'/l B-'& = 2~,(c;,,o)/s,~(c;,, 0) 

L/,(&4= - 5 

t 
no’ (z, 0) dz, z. (t, 0) = s xg (z, 0) Yo’ (‘c, 0) dr 

-co -co 

A simpler approximate form of the similarity rule (2.3) will be given in Sect.7. 

3. The asymptotic form of the solution as t+--oo. In the special case when 
(I, = 00 we have r(t)= --m and the integral Eq.(2.2) has an analytical solution derived /ll/ 
bytheoperationalmethod. Its asymptotic expansion as t+ - 00 takes the form*(*Vigdorovich 
1.1. Supersonic flow over solids with intense injection: Candidate Dissertation, Inst. Mech. 
Moscow State Univ., 1981.) 

((~)nl are Pochhammer's symbols /12/). We will generally seek the asymptotic presentation of 
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the solution of Eq.(2.2) in an analogous form to (3.1) 

fn (t, 0) - ii21/2N (-t)-B exp (ata) fl - a,P + a2t-” + . . .I (x!) 

I’ (f) - 1 - hp $ b&5 - b&8 + ‘  . .) t-r--CC (Xi) 

where the coefficients a, PI a,, b, are to be determined and N will be selected henceforth from 
the condition r,(-j- co, 0) = 'i.Having found the logarithmic of the secondrelation (2.2), and 
substituting (3.2) and (3.3) into it and equating coefficients of identical powersandlogarithms 
of t, we obtain 

b, = h (3ct)-', b2 = -4 (h + 6) (3afe2 

b3 = (5i&3 + 7/zfihz + fi2h - Saha,) (~cz)-~, h = In w 

From (3.2) we will have 

x0' (t, 0) - S/z J/ZaN(- t)a-flexp(atS) X 

I 

(3.4) 

!!o(b, a) - 'iz @V(- t)r+exp (ats) X (3.5) 

a2 

Eq.(2.2) is conveniently transformed to the form 

fZy,(t,o)- I’t-r(t)i;S’[(t -r(t))r-t,ojr-‘/~~? 
0 

(3.6) 

We expand both sides of Eq.(3.6), using (3.3)-(3.51, in a series up to terms of order 
tP. After integration from a comparison of the asymptotic expansions on both sides of the 
equation, fox the required coefficients, we obtain 

A limit transition, as w+oo for the coefficients (3.7) gives values corresponding 
to the expansion (3.1). According to (3.2), the pressure distribution has a weak logarithmic 
singularity at the start of the permeable section where z = 0. 

4. The asymptotic form of the solution as t++oo. The analytical solution of 
Eq.f3.2) has, as t-t i-00, the asymptotic expansion /ll/ 

(4.1) 

In general, by analogy with (4-l), let us assume 

x* (t, o) = I - At-“/x + 0 (t”‘+, t--t + 00 (4.2) 

We introduce the notation R = r(i- m), Y = y,(R, a), w = t-R. Substituting (4.2) into 
the second relation of (2.21, we will have 

Let us rewrite the integral Eq.(2.2) in the form 

(4.3) 

'Ibe asymptotic representation (4.6) is obtained as a result of substituting (4.3) into 
integral (4.5). We apply a Laplace transformation /13/ to the integral Eq.(4.4). 
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Let ua denote by X(z),G(z) of the Laplace transforms of the functions z,,'(R f W, W) and 
g(w) respectively. By the convolution theorem /13/forX(z) we obtain an ordinary differential 
equation of the first order, whose solution is 

X(z)= [~+S(;G(~)-Y)A(S)LZ~]/X(I) 
0 

c=l(Y -zG(z))H(z)dz, H(z)=exp (-..q ~‘1’ - Rz 
b 

Now the function x,, (t, w), using the integral of the Mellin transform f13f can be re- 
presented in the form 

2,(&w)= &e+~mZ(z)exp(zt)~, a>O, t>R 
V-Pal 

2 (2) = (X(z) +x0 (R, w)) erp (-Rz) 

(4.7) 

The asymptotic representation (4.6) enables us to write /14/ 

G (z) = G, + Vz ~/%%Ao-% In z f G,z + 0 (z2 In z), z--t 0 

where G, and G, are certain constants which depend on the behaviour of the functiong(w)over 
the whole semi-axis O<w< f 00. We expand the function Z(z) in an asymptotic series as 

z-+0 
2 (2) = c+ l/w - (Y + R/o)2 + 'l& @j&i* + (4.8) 

'iz (Go + RY + X2/o)z2 - V5Y1/%&* + 

V,A1/%z3 In ziw -j- 'I3 (G, - G,R - i12YR2 - 

'/,AI/%o + 'l&n - '/,R3io)z3 + '13V-z;c (iI,RY + 
V,,G,) ~"1 + 0 (z4 In z) 

Here, it is taken into account that in view of the definition of R and the secondrelation 
(2.2) x,(R,@ = 410. Now let us substitute (4.8) into integral (4.7) and change the order of 
integration and summation. Asaresult, we obtain the asymptotic expansion of the universal 
function x0 (t, w) as t+ +cm /13/. The terms of the sum (4.8) with integer powers of z do 
not contribute to the asymptotic form of the original. Gn comparing the asymptotic series 
derived in this way with (4.2), we determine the required coefficients. Finally we will 
obtain 

x* (t, 6)) = 1 - to -6ctl) v’z t-v* - z&z 1’ plz $ 

* t-3 + 0 (t-y, y, (t, 0) = ‘w --2)3 t’z p,* + 

14.9) 

q yt-‘/1 - -+f$ t-2 + o(t-V*), t--v-/-m 

The quantity Y remains undetermined. Since Y+O as o--t oi), in the limit the first 
relation (4.9) is identical with (4.1). The second asymptotic expansion (4.9) is obtained 
from the first on the basis of (2.4). 

5. Near-critical injection. To study the asymptotic form of the solution as o--t%, 
it is convenient to use Eq. (2.1), rewritten in the form 

1/z %(ro* w) = i' IY,'(&W) - Y*'(%~)P@ (5.1) 
*/o 

We will seek the solution of (5.1) in the form of the following asymptotic series: 

&)("o, w) = pL"3[q* (50) + CL% (Id + 0 WI, P = 1 - i/O (5.2) 

Let us change in (5.1) to the integration variable z according to the formula 5 --x0= 
- CX,T2 and expand the difference under the root in a Taylor series at the point x0 

$0' (5, 0) - Y,' (x0. w) = B*'Sl-Bx&b*(xO) + 
‘iiIL2X02+%“’ (Xl%) - p*Xo+q2” (IO) f 0 (p2)l 

Substituting this expansion into (5.1) and equating coefficient8 of the same powers of 
the small parameter, we obtain the ordinary differential equations for the required functions 

s,1/--tl;=I&, 2Q(- n;)'/* = T/2%;(?; - '/BOO%") (5.3) 
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By reducing the order of the equation of the first approximation by means of the sub- 
stitution /15/ 

we obtain the Abel equation of the second kind 

22 + 2 + 2u-2 = 0 (5.5) 
If the solution of Eq.(5.5) is known, the following terms of series (5.2) may be obtained 

in quadratures. Indeed, the equation of the second approximation (5.3), after substituting 
ns = V(U) z0 (u), becomes 

UV (u) V" - 2UV' - 4u = V,U + '/*z (IL) (5.6) 
and the corresponding equations for the terms of expansion (5.2) of higher order will only 
differ from (5.6) on the right-hand side. Now it is sufficient to note that the function 
z(u) is a partial solution of the uniform Eq.(5.6), after which its common integral can be 
written in the form /15/ 

The following series of transformations: 

z = --u - 2w, IL' + U3 + 2WU2 = 0 (5.7) 

% = wr - 1/u, w' = % - w2 (5.8) 

converts (5.5) into the special Ricatti Eq.(5.8) /15/ which, in its turn, after replacement 
of the variable w = (In 4 (%))', reduces to the Airey equation ‘A” = EA /16/. From (5.7), (5.8), 
(5.4) we will have 

ll = --l/w', z = l/w' - 2w = (In w')' 

ld au s I s de -= 
2 (u) w’ 

=2InA(%)+ lnw'(%) 

x0 = -a’ (5) A2 (E) = A’2 (E) - %A2 (%), ~1 = Aa (E) (5.9) 

The general solution of the Airey equation is a linear combination of Airey functions of 
the first and second kind Ai (%), Bi (%)/16/. We will determine the range of variation of 
the parameter % and constants of integration arising from the physical conditions of the 
problem. As follows from (5.9), at the point Eo, for which x0 = 0, qI = 0, we must have 
A (Eo)= 0, A’(&)= 0. These conditions cannot be satisfied for a finite value of %a since the 
Airey equation has no singularities in a finite plane. The Airey functions oscillate as 
%--cc, so that x0(%) does not tend to zero. As %+ +co, the function Ai (5) decays 
exponentially, while Bi(%) increases, whence it follows that A (E)=DAi(E), and D is a 
constant. We define D and %r the left limit of the range of variation of %, fromtheconditions 

x0(%1)=4, sr(%r)=O This gives %r- -2.33811 as the largest root of the Airey function of 
the first kind, D = 1lA’i (El) E 1.4262 /17/. 

Now the limit pressure distribution, as o+ 1 and the injection layer thickness 
distribution can be written in the following parametric form: 

(5.10) 

y, = ~1’3 [DAi (%)I2 + 0 (P~'~) 
x,, = D2 LAP (5) - %Ai2 (%)I, & < E < -4-m 

iience, using the asymptotic form of the Airey function as %- +c=' /16/, we obtain the 
asymptotic representation of the universal function, which is correct when w - 1,s+ + 00 

x0- xs ‘a ~~exp(~sa+l)(l+~S~a+~S~s+...), s = p-*/at 

This result agrees completely with (3.2) and (3.7), since the limit transition O-t1 
in (3.7) gives ~'a = file,@ = 2,a,7' = -4413. In addition, comparing expansions (3.2) and (5.11) 
we will have 

N = v@J, v=* (1+0(P)), 0-l (5.12) 
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We note that the asymptotic representation of the universal function as w+1,s++c0, 
which can be obtained from (5.10), and the expressions of the Airey function at zero, are not 
identical with the limit form of expansion (4.9) as 0-t 1. One reason for this is the non- 
uniform character of the asymptotic series (5.2) in the neighbourhood of the point ~0 = 1. 

6. Numerical solution of the integral equation. Using the independent variable 
s, we can rewrite Eq.(2.2) integrally in the form 

II 

s -dT= 5’ (4 
_oo 1/,-r 

f (; [s-q(t)]+- f&T] Z’(T) dr 

-cm 

and we can solve it 
a result, we obtain 

,$ = p-‘/y, q (s) = p-s (t) 

for the function s(s) on the left-hand side, as an Abel equation /13/. As 

I 

=(s)+ 
s 
r(r)dK(s,r, q(r)) = 0, I [q(s)] =g! (6.1) 

-m 

For a fairly large negative number, in absolute magnitude, a, we can write approximately 

Z(S)+ &)dK(8. T,Q (T)) = - i E(z) dK (8. z> 'l(r)) (9.9) 
a -w 

E (s) = ‘i, 1/fi (-s)+ exp (qd) (1 - a,y-‘~-~) 

Here, the function E(s) is chosen in accordance with the asymptotic expansion (3.2) and 
formula (5.12); the function q(s) on the right-hand side of (6.2) is specified by the asymptotic 
series (3.3). The error, as a result of the replacement of the solution Z(S) by its approximate 
value E(s) can be evaluated by the first discarded term of the asymptotic form (3.2), which 
is equal to cgl(~*sa) also taking into account that, in accordance with (3.1), (5.11) we obtain 
%p-8 = 1801nz/1152 for o = m and asp-s = 47019 for 0 = i. In order that the unknown function 
should be of the order of unity we will use the change of variable z(s)= Ed, in the 
interval la,bl where the function E(s) is sufficiently close to the solution. 

We shall solve Eq.(6.2) as a Volterra integral equation of the second kind, replacing 
the integral by a finite sum. For example, for a<~< b we will use the following quadratic 
formula of the first algebraic degree of accuracy with the twofold expansion of the residue 
from the Euler quadrature /18/: 

P (~3 T) = E (7) +T K (3, T, q 6)) 

Sk+1 

A, = s P (Q 4 dT, 

4-l 

ci = $$t [ ‘1 B<+, (ea) P (sn, ~1 dT - 

m 

x k=l 
ABk_-LBi+l(~)], i=O,i; s,,=a+nh 

(6.4) 

Here Bi(z) are Bernoulli polynomials /18/ and h is the integration step. The derivative 
of the unknown function in (6.3) is approximated by a finite difference. Formulae (6.3) and 
(6.4) are written for n= 2m and for odd values of n are analogous. 

Now it is possible to define sequentially, in recurrent formulae, the values 7" (a). z (-%I) 
in each interval, and then q(sn) from the second equation of (6.1). 



474 

When evaluating the integrals (6.4), the function 4("1 was interpolated by a third-degree 
polynomial, 

To normalize the numerical solution, i.e. to define the value of v in (5.12) for each VI 
for sufficiently large s we take advantage of the asymptotic expansion (4.91, into which we 
substitute s0 (t, 0) = VI ($1, 1- = Eli tq (~1) 1- 0 (s -*'?. The values of Y for various injection parameters 
are given in the table. 

The accuracy of the method described was checked on limit analytical solutions, Thus, 
for o = m. a 2 -- 5. b -= -1.8. h 2 I) Ifi, the numerical solution differs from the exact solution /ll/ 
by less than 0.1%. 

7. Results of calculations and conclusions. It is convenient to represent the 
similarity variables in the form 

Universal curves are presented in Fig.2, which give the distribution along the length of 
the plate of the transformed pressure coefficient c p" (the solid lines) and the thickness of 
the injection layer no (the dotted lines) for different values of the parameter o. To obtain 
the pressure distribution and the distribution of injection layer thickness which correspond 
to a certain pressure coefficient at the termination point of injection cplu, the solid curves 
in Fig.2 should be stretched along the abscissa axis and the dotted curves along the ordinate 
axis l/r, (c,,", a), once,and their parts corresponding to the interval O<X<l should be 
taken. The dependences of the force coefficients (the solid lines) and the moment (the dotted 
lines) on the pressure at the end of the permeable section are given in Fig.3. In Figs.2, 3 
curves 1-3 correspond to the values of the relative injection parameter o = 1;1,5;cr, respectively. 
The excess force acting on the plate, as expected from (2.41, (4.9), tends to zero as cplO+ 

-00, in other words, at low pressure at the end of the permeable section the regions with 
increased and reduced pressure almost cancel each other out. The moment coefficient c," 
calculated with respecttothe origin of coordinates, tends towards the negative value Cm1 " 
as cpln --t --00 , whose modulus is equal to twice the area under the corresponding curve no &I) 
in Fig.2. The value cml* for various injection parameters is given in the table. 

Fig.2 Fig.3 

In Fig.2, the similarity curves which relate to the limit values of the injection 
parameter 1 and m are close to one another. Specific dependences of the pressure on the 
longitudinal coordinate for fixed CPl ” and various o are obtainedbystretching corresponding 
sections of the universal curves along the abscissa axis, where their ends coincide, while the 
graphs of these dependences move even closer together. Consequently, at identical pressure 
values at the termination point of the injection cpl" the distribution of the transformed 
pressure coefficient cp" along the length of the plate is practically independent of the 
injection parameter. This makes it possible to give a simpler formulation of the similarity 
rule (2.3): 

II: = %I (Cp”)/% &1)7 cp = (iv,4 - I)-‘(8 [B (B - B*)]‘il cp” (7.1) 

Thus, the results for the pressure distribution obtained in an ideal formulation, when 
the ML is examined as a contact-breaking surface, are suitable over the whole of the super- 
critical range of injection parameter if cp' is replaced by cp". For large injections cp* 
is little different from c;. In this case, as demonstrated in /2/, the similarity rule (7.1) 
andthecalculated dependences presented in Fig.2 are in good agreement with experimental data. 

Permitted limits of the change in the injection parameter are defined, on the one hand, 
by the condition for the ML thickness to be small compared with the thickness of the inviscid 
boundary region and on the other, by the validity of the thin-layer approximation and of the 
linear theory of supersonic flow. Fox typical thickness of the ML and the non-viscous part 
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of the injection layer it is possible to take lg,ip, and l(M, - 1)". [B (B - S,)1'/" respectively. 
Then the limits on the defining parameters of the problem are formulated as 
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